Operating system
An operating system (OS) is software, consisting of programs and data, that runs on computers, manages computer hardware resources, and provides common services for execution of various application software.
For hardware functions such as input and output and memory allocation, the operating system acts as an intermediary between application programs and the computer hardware, although the application code is usually executed directly by the hardware and will frequently call the OS or be interrupted by it. Operating systems are found on almost any device that contains a computer—from cellular phones and video game consoles to supercomputers and web servers.
Examples of popular modern operating systems for personal computers are: Microsoft Windows, Mac OS X, Linux, and Unix.
Types
· Real-time
· A real-time operating system is a multitasking operating system that aims at executing real-time applications. Real-time operating systems often use specialized scheduling algorithms so that they can achieve a deterministic nature of behavior. The main object of real-time operating systems is their quick and predictable response to events. They either have an event-driven or a time-sharing design. An event-driven system switches between tasks based on their priorities while time-sharing operating systems switch tasks based on clock interrupts.
· Multi-user vs. Single-user
· A multi-user operating system allows multiple users to access a computer system concurrently. Time-sharing system can be classified as multi-user systems as they enable a multiple user access to a computer through the sharing of time. Single-user operating systems, as opposed to a multi-user operating system, are usable by a single user at a time. Being able to have multiple accounts on a Windows operating system does not make it a multi-user system. Rather, only the network administrator is the real user. But for a Unix-like operating system, it is possible for two users to login at a time and this capability of the OS makes it a multi-user operating system.
· Multi-tasking vs. Single-tasking
· When a single program is allowed to run at a time, the system is grouped under a single-tasking system, while in case the operating system allows the execution of multiple tasks at one time, it is classified as a multi-tasking operating system. Multi-tasking can be of two types namely, pre-emptive or co-operative. In pre-emptive multitasking, the operating system slices the CPU time and dedicates one slot to each of the programs. Unix-like operating systems such as Solaris and Linux support pre-emptive multitasking. Cooperative multitasking is achieved by relying on each process to give time to the other processes in a defined manner. MS Windows prior to Windows 95 used to support cooperative multitasking.
· Distributed
· A distributed operating system manages a group of independent computers and makes them appear to be a single computer. The development of networked computers that could be linked and communicate with each other, gave rise to distributed computing. Distributed computations are carried out on more than one machine. When computers in a group work in cooperation, they make a distributed system.
· Embedded
· Embedded operating systems are designed to be used in embedded computer systems. They are designed to operate on small machines like PDAs with less autonomy. They are able to operate with a limited number of resources. They are very compact and extremely efficient by design. Windows CE and Minix 3 are some examples of embedded operating systems.
Examples of Operating Systems
· Linux and GNU
· Linux (or GNU/Linux) is a Unix-like operating system that can be used on a wide range of devices from supercomputers to wristwatches. The Linux kernel is released under an open source license, so anyone can read and modify its code. It has been modified to run on a large variety of electronics. Although estimates suggest that Linux is used on only 1.0% of all personal computers, it has been widely adopted for use in servers and embedded systems (such as cell phones). Linux has superseded Unix in most places, and is used on the 10 most powerful supercomputers in the world. The Linux kernel is used in some popular distributions, such as Red Hat, Debian, Ubuntu, Linux Mint and Google's Android.
· The GNU project is a mass collaboration of programmers who seek to create a completely free and open operating system that was similar to Unix but with completely original code. It was started in 1983 by Richard Stallman, and is responsible for many of the parts of most Linux variants. For this reason, some claim that the combined product of the Linux kernel and the GNU software collection is more correctly called GNU/Linux. Thousands of pieces of software for virtually every operating system are licensed under the GNU General Public License. Meanwhile, the Linux kernel began as a side project of Linus Torvalds, a university student from Finland. In 1991, Torvalds began work on it, and posted information about his project on a newsgroup for computer students and programmers. He received a wave of support and volunteers who ended up creating a full-fledged kernel. Programmers from GNU took notice, and members of both projects worked to integrate the finished GNU parts with the Linux kernel in order to create a full-fledged operating system.
· Mac OS X
· Mac OS X is a line of partially proprietary graphical operating systems developed, marketed, and sold by Apple Inc., the latest of which is pre-loaded on all currently shipping Macintosh computers. Mac OS X is the successor to the original Mac OS, which had been Apple's primary operating system since 1984. Unlike its predecessor, Mac OS X is a UNIX operating system built on technology that had been developed at NeXT through the second half of the 1980s and up until Apple purchased the company in early 1997.
· The operating system was first released in 1999 as Mac OS X Server 1.0, with a desktop-oriented version (Mac OS X v10.0) following in March 2001. Since then, six more distinct "client" and "server" editions of Mac OS X have been released, the most recent being Mac OS X v10.6, which was first made available on August 28, 2009. Releases of Mac OS X are named after big cats; the current version of Mac OS X is "Snow Leopard".
· The server edition, Mac OS X Server, is architecturally identical to its desktop counterpart but usually runs on Apple's line of Macintosh server hardware. Mac OS X Server includes work group management and administration software tools that provide simplified access to key network services, including a mail transfer agent, a Samba server, an LDAP server, a domain name server, and others.
· Microsoft Windows
· Microsoft Windows is a family of proprietary operating systems most commonly used on personal computers. It is the most common family of operating systems for the personal computer, with about 90% of the market share. Currently, the most widely used version of the Windows family is Windows XP, released on October 25, 2001. The newest version is Windows 7 for personal computers and Windows Server 2008 R2 for servers.
· Microsoft Windows originated in 1981 as an add-on to the older MS-DOS operating system for the IBM PC. First publicly released in 1985, Windows came to dominate the business world of personal computers, and went on to set a number of industry standards and commonplace applications. Beginning with Windows XP, all modern versions are based on the Windows NT kernel. Current versions of Windows run on IA-32 and x86-64 processors, although older versions sometimes supported other architectures.
· Windows is also used on servers, supporting applications such as web servers and database servers. In recent years, Microsoft has spent significant marketing and research & development money to demonstrate that Windows is capable of running any enterprise application, which has resulted in consistent price/performance records (see the TPC) and significant acceptance in the enterprise market. However, its usage in servers is not as widespread as personal computers, and here Windows actively competes against Linux and BSD for market share, while still capturing a steady majority by some accounts.
· Components
· The components of an operating system all exist in order to make the different parts of a computer work together. All software—from financial databases to film editors—needs to go through the operating system in order to use any of the hardware, whether it be as simple as a mouse or keyboard or complex as an Internet connection.
· Kernel
· With the aid of the firmware and device drivers, the operating system provides the most basic level of control over all of the computer's hardware devices. It manages memory access for programs in the RAM, it determines which programs get access to which hardware resources, it sets up or resets the CPU's operating states for optimal operation at all times, and it organizes the data for long-term non-volatile storage with file systems on such media as disks, tapes, flash memory, etc.
· Program execution
· The operating system acts as an interface between an application and the hardware. The user interacts with the hardware from "the other side". The operating system is a set of services which simplifies development of applications. Executing a program involves the creation of a process by the operating system. The kernel creates a process by assigning memory and other resources, establishing a priority for the process (in multi-tasking systems), loading program code into memory, and executing the program. The program then interacts with the user and/or other devices and performs its intended function.
· Interrupts
· Interrupts are central to operating systems, as they provide an efficient way for the operating system to interact with and react to its environment. The alternative — having the operating system "watch" the various sources of input for events (polling) that require action — can be found in older systems with very small stacks (50 or 60 bytes) but are unusual in modern systems with large stacks. Interrupt-based programming is directly supported by most modern CPUs. Interrupts provide a computer with a way of automatically saving local register contexts, and running specific code in response to events. Even very basic computers support hardware interrupts, and allow the programmer to specify code which may be run when that event takes place.
· When an interrupt is received, the computer's hardware automatically suspends whatever program is currently running, saves its status, and runs computer code previously associated with the interrupt; this is analogous to placing a bookmark in a book in response to a phone call. In modern operating systems, interrupts are handled by the operating system's kernel. Interrupts may come from either the computer's hardware or from the running program.
· When a hardware device triggers an interrupt, the operating system's kernel decides how to deal with this event, generally by running some processing code. The amount of code being run depends on the priority of the interrupt (for example: a person usually responds to a smoke detector alarm before answering the phone). The processing of hardware interrupts is a task that is usually delegated to software called device driver, which may be either part of the operating system's kernel, part of another program, or both. Device drivers may then relay information to a running program by various means.
· A program may also trigger an interrupt to the operating system. If a program wishes to access hardware for example, it may interrupt the operating system's kernel, which causes control to be passed back to the kernel. The kernel will then process the request. If a program wishes additional resources (or wishes to shed resources) such as memory, it will trigger an interrupt to get the kernel's attention.
· Modes
· Modern CPUs support multiple modes of operation. CPUs with this capability use at least two modes: protected mode and supervisor mode. The supervisor mode is used by the operating system's kernel for low level tasks that need unrestricted access to hardware, such as controlling how memory is written and erased, and communication with devices like graphics cards. Protected mode, in contrast, is used for almost everything else. Applications operate within protected mode, and can only use hardware by communicating with the kernel, which controls everything in supervisor mode. CPUs might have other modes similar to protected mode as well, such as the virtual modes in order to emulate older processor types, such as 16-bit processors on a 32-bit one, or 32-bit processors on a 64-bit one.
· When a computer first starts up, it is automatically running in supervisor mode. The first few programs to run on the computer, being the BIOS, bootloader and the operating system have unlimited access to hardware - and this is required because, by definition, initializing a protected environment can only be done outside of one. However, when the operating system passes control to another program, it can place the CPU into protected mode.
· In protected mode, programs may have access to a more limited set of the CPU's instructions. A user program may leave protected mode only by triggering an interrupt, causing control to be passed back to the kernel. In this way the operating system can maintain exclusive control over things like access to hardware and memory.
· Multi-tasking
· Multitasking refers to the running of multiple independent computer programs on the same computer; giving the appearance that it is performing the tasks at the same time. Since most computers can do at most one or two things at one time, this is generally done via time-sharing, which means that each program uses a share of the computer's time to execute.
· An operating system kernel contains a piece of software called a scheduler which determines how much time each program will spend executing, and in which order execution control should be passed to programs. Control is passed to a process by the kernel, which allows the program access to the CPU and memory. Later, control is returned to the kernel through some mechanism, so that another program may be allowed to use the CPU. This so-called passing of control between the kernel and applications is called a context switch.
· An early model which governed the allocation of time to programs was called cooperative multitasking. In this model, when control is passed to a program by the kernel, it may execute for as long as it wants before explicitly returning control to the kernel. This means that a malicious or malfunctioning program may not only prevent any other programs from using the CPU, but it can hang the entire system if it enters an infinite loop.
· Modern operating systems extend the concepts of application preemption to device drivers and kernel code, so that the operating system has preemptive control over internal run-times as well.
· The philosophy governing preemptive multitasking is that of ensuring that all programs are given regular time on the CPU. This implies that all programs must be limited in how much time they are allowed to spend on the CPU without being interrupted. To accomplish this, modern operating system kernels make use of a timed interrupt. A protected mode timer is set by the kernel which triggers a return to supervisor mode after the specified time has elapsed. (See above sections on Interrupts and Dual Mode Operation.)
· On many single user operating systems cooperative multitasking is perfectly adequate, as home computers generally run a small number of well tested programs. Windows NT was the first version of Microsoft Windows which enforced preemptive multitasking, but it didn't reach the home user market until Windows XP (since Windows NT was targeted at professionals).
· Virtual-memory
· The use of virtual memory addressing (such as paging or segmentation) means that the kernel can choose what memory each program may use at any given time, allowing the operating system to use the same memory locations for multiple tasks.
· If a program tries to access memory that isn't in its current range of accessible memory, but nonetheless has been allocated to it, the kernel will be interrupted in the same way as it would if the program were to exceed its allocated memory. Under UNIX this kind of interrupt is referred to as a page fault.
· When the kernel detects a page fault it will generally adjust the virtual memory range of the program which triggered it, granting it access to the memory requested. This gives the kernel discretionary power over where a particular application's memory is stored, or even whether or not it has actually been allocated yet.
· In modern operating systems, memory which is accessed less frequently can be temporarily stored on disk or other media to make that space available for use by other programs. This is called swapping, as an area of memory can be used by multiple programs, and what that memory area contains can be swapped or exchanged on demand.
· Graphical user interfaces
· Most of the modern computer systems support graphical user interfaces (GUI), and often include them. In some computer systems, such as the original implementation of Mac OS, the GUI is integrated into the kernel.
· While technically a graphical user interface is not an operating system service, incorporating support for one into the operating system kernel can allow the GUI to be more responsive by reducing the number of context switches required for the GUI to perform its output functions. Other operating systems are modular, separating the graphics subsystem from the kernel and the Operating System. In the 1980s UNIX, VMS and many others had operating systems that were built this way. GNU/Linux and Mac OS X are also built this way. Modern releases of Microsoft Windows such as Windows Vista implement a graphics subsystem that is mostly in user-space; however the graphics drawing routines of versions between Windows NT 4.0 and Windows Server 2003 exist mostly in kernel space. Windows 9x had very little distinction between the interface and the kernel.
· Many computer operating systems allow the user to install or create any user interface they desire. The X Window System in conjunction with GNOME or KDE is a commonly found setup on most Unix and Unix-like (BSD, GNU/Linux, Solaris) systems. A number of Windows shell replacements have been released for Microsoft Windows, which offer alternatives to the included Windows shell, but the shell itself cannot be separated from Windows.
· Numerous Unix-based GUIs have existed over time, most derived from X11. Competition among the various vendors of Unix (HP, IBM, Sun) led to much fragmentation, though an effort to standardize in the 1990s to COSE and CDE failed for various reasons, and were eventually eclipsed by the widespread adoption of GNOME and KDE. Prior to free software-based toolkits and desktop environments, Motif was the prevalent toolkit/desktop combination (and was the basis upon which CDE was developed).
· Graphical user interfaces evolve over time. For example, Windows has modified its user interface almost every time a new major version of Windows is released, and the Mac OS GUI changed dramatically with the introduction of Mac OS X in 1999.
· Real-time operating systems
· A real-time operating system (RTOS) is a multitasking operating system intended for applications with fixed deadlines (real-time computing). Such applications include some small embedded systems, automobile engine controllers, industrial robots, spacecraft, industrial control, and some large-scale computing systems.
· An early example of a large-scale real-time operating system was Transaction Processing Facility developed by American Airlines and IBM for the Sabre Airline Reservations System.
· Embedded systems that have fixed deadlines use a real-time operating system such as VxWorks, PikeOS, eCos, QNX, MontaVista Linux and RTLinux. Windows CE is a real-time operating system that shares similar APIs to desktop Windows but shares none of desktop Windows' codebase. Symbian OS also has an RTOS kernel (EKA2) starting with version 8.0b.
· Some embedded systems use operating systems such as Palm OS, BSD, and GNU/Linux, although such operating systems do not support real-time computing.
· How to choose operating system
· When deciding which OS is the right one for you, there are a few things you should evaluate:
1. What will it be used for?
2. What level of security do you need?
First, think about what the OS will be used for. For example, a computer being used for business would require an OS that can handle important business data with ease. If the computer is being used for home and/or school, then an OS designed for gaming with a good word processor would be best. Or if the computer were for a new use, then the best choice would be a simple, user-friendly OS.
Typically, most new computers come with an OS pre-installed on them - Apple computers come with Mac OS X whereas most PCs come with Windows XP. So, it is also important to consider the operating system even when choosing a new computer.
Security, especially these days, is one of the highest priorities whether it's for home or business. Not surprisingly, each OS has a different level of security that it provides. Microsoft Windows and Linux are widely viewed as the easiest operating systems for computer hackers to get into while the Mac OS X and Unix are labeled the most secure operating systems around. Microsoft does try to make their OS safer by consistently providing security updates but hackers still manage to find their way through.
Conclusion
Today there are many different operating systems, as directed on certain task and to solve common problems. The first question is who should decide, as I wrote, what OS will solve the problem. If you are fond of playing, I think you should buy a game-console play windose. If you just want to have a convenient system, you should choose Mac OS. If you want to know how working your computer and controle it, you should choose Linux Os.
Today Operating System consists of many difficult part. Each part has its errors and its nuances. And there are many solutions for each problem.
References
· Tanenbaum, Andrew S. (1979). Structured Computer Organization.
· Lorin, Harold (1981). Operating systems. Boston, Massachusetts: Addison-Wesley.
· Ru.wikipedia.org
